Data-partitioning using the Hilbert space filling curves: Effect on the speed of convergence of Fuzzy ARTMAP for large database problems
نویسندگان
چکیده
The Fuzzy ARTMAP algorithm has been proven to be one of the premier neural network architectures for classification problems. One of the properties of Fuzzy ARTMAP, which can be both an asset and a liability, is its capacity to produce new nodes (templates) on demand to represent classification categories. This property allows Fuzzy ARTMAP to automatically adapt to the database without having to a priori specify its network size. On the other hand, it has the undesirable side effect that large databases might produce a large network size (node proliferation) that can dramatically slow down the training speed of the algorithm. To address the slow convergence speed of Fuzzy ARTMAP for large database problems, we propose the use of space-filling curves, specifically the Hilbert space-filling curves (HSFC). Hilbert space-filling curves allow us to divide the problem into smaller sub-problems, each focusing on a smaller than the original dataset. For learning each partition of data, a different Fuzzy ARTMAP network is used. Through this divide-and-conquer approach we are avoiding the node proliferation problem, and consequently we speedup Fuzzy ARTMAP's training. Results have been produced for a two-class, 16-dimensional Gaussian data, and on the Forest database, available at the UCI repository. Our results indicate that the Hilbert space-filling curve approach reduces the time that it takes to train Fuzzy ARTMAP without affecting the generalization performance attained by Fuzzy ARTMAP trained on the original large dataset. Given that the resulting smaller datasets that the HSFC approach produces can independently be learned by different Fuzzy ARTMAP networks, we have also implemented and tested a parallel implementation of this approach on a Beowulf cluster of workstations that further speeds up Fuzzy ARTMAP's convergence to a solution for large database problems.
منابع مشابه
Pipelining of Fuzzy ARTMAP without matchtracking: Correctness, performance bound, and Beowulf evaluation
Fuzzy ARTMAP neural networks have been proven to be good classifiers on a variety of classification problems. However, the time that Fuzzy ARTMAP takes to converge to a solution increases rapidly as the number of patterns used for training is increased. In this paper we examine the time Fuzzy ARTMAP takes to converge to a solution and we propose a coarse grain parallelization technique, based o...
متن کاملEquilibrium problems and fixed point problems for nonspreading-type mappings in hilbert space
In this paper by using the idea of mean convergence, weintroduce an iterative scheme for finding a common element of theset of solutions of an equilibrium problem and the fixed points setof a nonspreading-type mappings in Hilbert space. A strongconvergence theorem of the proposed iterative scheme is establishedunder some control conditions. The main result of this paper extendthe results obtain...
متن کاملLoad Balancing using Hilbert Space-filling Curves for Parallel Reservoir Simulations
New reservoir simulators designed for parallel computers enable us to overcome performance limitations of personal computers and to simulate large-scale reservoir models. With development of parallel reservoir simulators, more complex physics and detailed models can be studied. The key to design efficient parallel reservoir simulators is not to improve the performance of individual CPUs drastic...
متن کاملSolving Fuzzy Impulsive Fractional Differential Equations by Reproducing Kernel Hilbert Space Method
The aim of this paper is to use the Reproducing kernel Hilbert Space Method (RKHSM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutionsof this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provi...
متن کاملStudy on the Trend of Range Cover Changes Using Fuzzy ARTMAP Method and GIS
The major aim of processing satellite images is to prepare topical and effectivemaps. The selection of appropriate classification methods plays an important role. Amongvarious methods existing for image classification, artificial neural network method is ofhigh accuracy. In present study, TM images of 1987, and ETM+ images of 2000 and 2006were analyzed using artificial fuzzy ARTMAP neural netwo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 18 7 شماره
صفحات -
تاریخ انتشار 2005